banner



Volume Formula For Hexagonal Prism

Expanse and Volume of Hexagonal Prism

View Discussion

Amend Article

Save Article

Like Article

  • Read
  • Talk over
  • View Discussion

    Amend Commodity

    Salvage Commodity

    Similar Article

    Given a Base of operations edge and Height of the Hexagonal prism, the job is to observe the Surface Expanse and the Volume of hexagonal Prism. In mathematics, a hexagonal prism is a three-dimensional solid shape which accept 8 faces, eighteen edges, and 12 vertices. The two faces at either ends are hexagons, and the rest of the faces of the hexagonal prism are rectangular.

    hexagonal prism

    where a is the base length and h is the height of the hexagonal prism.

    Surface Area =6ah + 3\sqrt{3}a^{2}
    Volume =\frac{3\sqrt{3}}{2}a^{2}h

    Examples:

    Input : a = 4, h = 3 Output : Surface Area: 155.138443          Volume: 124.707657  Input : a = 5, h = ten Output : Surface area: 429.904          Volume: 649.519

    C++

    #include <bits/stdc++.h>

    using namespace std;

    void findSurfaceArea( float a, float h)

    {

    bladder Expanse;

    Expanse = 6 * a * h + 3 * sqrt (3) * a * a;

    cout << "Surface Expanse: " << Surface area;

    cout << "\n" ;

    }

    void findVolume( float a, bladder h)

    {

    bladder Volume;

    Book = 3 * sqrt (three) * a * a * h / 2;

    cout << "Volume: " << Volume;

    }

    int main()

    {

    float a = 5, h = 10;

    findSurfaceArea(a, h);

    findVolume(a, h);

    return 0;

    }

    Coffee

    import java.io.*;

    class GFG {

    static void findSurfaceArea( bladder a, float h)

    {

    bladder Area;

    Area = 6 * a * h + 3 * ( float )(Math.sqrt( 3 )) * a * a;

    System.out.println( "Surface Area: " + Surface area);

    }

    static void findVolume( float a, float h)

    {

    bladder Volume;

    Volume = 3 * ( float )(Math.sqrt( 3 )) * a * a * h / ii ;

    Organization.out.println( "Volume: " + Volume);

    }

    public static void main (String[] args)

    {

    float a = 5 , h = x ;

    findSurfaceArea(a, h);

    findVolume(a, h);

    }

    }

    Python3

    import math

    def findSurfaceArea(a, h):

    Surface area = 0 ;

    Area = ( 6 * a * h +

    three * math.sqrt( three ) * a * a);

    print ( "Surface Surface area:" ,

    circular (Area, 3 ));

    def findVolume(a, h):

    Volume = 0 ;

    Volume = ( 3 * math.sqrt( 3 ) *

    a * a * h / 2 );

    impress ( "Book:" ,

    circular (Volume, 3 ));

    a = 5 ;

    h = 10 ;

    findSurfaceArea(a, h);

    findVolume(a, h);

    C#

    using System;

    class GFG

    {

    static void findSurfaceArea( float a,

    bladder h)

    {

    float Area;

    Area = 6 * a * h + 3 *

    ( float )(Math.Sqrt(iii)) * a * a;

    Console.WriteLine( "Surface Area: " +

    Area);

    }

    static void findVolume( float a,

    float h)

    {

    float Volume;

    Book = iii * ( float )(Math.Sqrt(3)) *

    a * a * h / 2;

    Console.WriteLine( "Volume: " +

    Volume);

    }

    public static void Main ()

    {

    float a = 5, h = 10;

    findSurfaceArea(a, h);

    findVolume(a, h);

    }

    }

    PHP

    <?php

    part findSurfaceArea( $a , $h )

    {

    $Expanse ;

    $Surface area = half-dozen * $a * $h + iii *

    sqrt(three) * $a * $a ;

    repeat "Surface Area: " ,

    $Surface area , "\n" ;

    }

    function findVolume( $a , $h )

    {

    $Volume ;

    $Volume = three * sqrt(3) *

    $a * $a * $h / two;

    echo "Volume: " , $Volume ;

    }

    $a = 5; $h = ten;

    findSurfaceArea( $a , $h );

    findVolume( $a , $h );

    ?>

    Javascript

    <script>

    office findSurfaceArea( a,  h)

    {

    let Area;

    Area = 6 * a * h + 3 * Math.sqrt(3) * a * a;

    document.write( "Surface Area: " + Surface area.toFixed(three) + "<br/>" );

    }

    function findVolume( a,  h)

    {

    permit Volume;

    Volume = 3 * Math.sqrt(3) * a * a * h / 2;

    document.write( "Volume: " + Volume.toFixed(3));

    }

    let a = 5, h = x;

    findSurfaceArea(a, h);

    findVolume(a, h);

    </script>

    Time complexity : O(1)  as performing constant operations
    Auxiliary Space : O(1)


    Volume Formula For Hexagonal Prism,

    Source: https://www.geeksforgeeks.org/surface-area-and-volume-of-hexagonal-prism/

    Posted by: daviswillith1981.blogspot.com

    0 Response to "Volume Formula For Hexagonal Prism"

    Post a Comment

    Iklan Atas Artikel

    Iklan Tengah Artikel 1

    Iklan Tengah Artikel 2

    Iklan Bawah Artikel